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Abstract

The present paper focuses on in-plane linear free vibrations of circular arches, in undamaged and
damaged configurations. For the model herein utilized, the equations of motion, in terms of displacements
and rotation, take into account shearing and axial deformations and rotary inertia. The cracked section of
the arch is modeled with an elastic spring. An exact analytical method of solution and an approximate
numerical one are presented. The first method solves the fundamental system in closed form, by means of a
characteristic polynomial; the second one is based on a simple and efficient differential quadrature and
domain decomposition technique. Natural frequencies and mode shapes are computed for some significant
cases, showing very good agreement between the two approaches.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Due to its theoretical and practical importance, the free in-plane vibration problem of arches
and rings has become a widely investigated field and a number of publications on this subject is
available in the scientific literature. The first studies on this argument date back to the work of
Lamb [1], Love [2] and Den Hartog [3] and frequently still appeared in the scientific literature. The
available general complete structural models, in the arch case, become complicated due to the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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curvilinear geometry, which produces a coupling between displacements and rotation in the
equations of motion. However, the problem can be somewhat simplified, introducing
certain assumptions on the kinematic assessment of the arch and on its inertial properties.
Among the simplified models available in the open literature, we mention the one with
negligible rotary inertia, shearing deformation and axial extensibility [4,5], which gives a
singular sixth-order partial differential equation of motion; and the model which accounts
for axial deformability but not for rotational inertia and for transverse deformations [6,7],
governed by two coupled differential equations for the tangential and radial displace-
ments. Finally, one has the ‘‘complete’’ model which takes into account the total of these
three contributions and is governed by a triplet of coupled second-order differential equations
for the unknown rotation and displacements [8,9]. With regard to this complete model,
different solving approaches have been proposed. For example, Tüfekc- i and Arpaci [8] solved
the free harmonic vibration problem for the circular uniform arch with several boundary
conditions. Irie et al. [10] applied the transfer matrix method in the in-plane vibrations ana-
lysis of circular arches with different sections and different sets of boundary conditions. An
hybrid-mixed element was proposed by Benedetti et al. [11], for the case of a general curvilinear
arch structure with variable cross section and curvature along the axis, based on a modified
formulation of the Hellinger–Reissner principle, while Tseng et al. [12] introduce the dynamic
stiffness method for the in-plane vibrations of general curvilinear compound with variable
curvature. Recently, Wu and Chiang [9] utilized a circular arch finite element with two nodes
and 6 dof.
The numerous previous studies are focused on the dynamic behavior of the arch in the

undamaged configuration. Even if, for the case of straight beams with a localized damage, many
reports are available in the literature, see, for example, Refs. [13–15], the same does not hold true
for the arch and to the very best of the authors’ knowledge, minor attention has been given to the
analysis of such structures in damaged configuration [16,17]. The goal of this paper, thus, is to
provide a contribution in this direction and to investigate the free harmonic vibration problem of
circular arches, modelling the cracked cross section with an elastic hinge [18–21]. For each arch
segment generated by the crack, the equations of motion have been written with no simplifying
hypothesis. Once the boundary conditions and jump conditions across the damaged section have
been set, the solution of the problem, in terms of natural frequencies and mode shapes, has been
obtained.
The first strategy adopted herein is an analytical one and is based on roots finding of the

characteristic polynomial. The second method, a numerical one known as Differential Quadrature
(D.Q.) method [22], has been tested for computational efficiency and validated by comparison
with analytical results. A similar collocation method had already been applied to the linear
vibration and stability analysis of straight and curved beams by Kang et al. [23,24] in a slightly
different form from the one adopted in the present work. The D.Q. method permits to discretize
both the governing equations and boundary conditions, together with the jump conditions
[25–27], avoiding any simplifying hypothesis in the physical model such as the so called d-point
technique [28]. The polynomial interpolation rule for the configuration variables provides clearly
accurate results for the examined modal parameters and the corresponding quadrature formulas
can be derived in a simple recursive manner, once the collocation points are chosen on the
domain [29].
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Accordingly, the first fundamental frequencies for a couple of specimen structures both in
undamaged and damaged configurations have been computed, for different locations and severity
of the crack.
In all the examined cases an optimal agreement can be observed between results obtained using

the two procedures. The frequency variations depend both on position and severity of the damage
and surely can constitute a good efficiency state indicator for the considered arch. Possible future
developments of the proposed approaches could be the crack identification problem by
eigenparameters variations between damaged and undamaged configurations and the analysis
of the dynamic behavior of the arch when material and geometric nonlinearities are considered.
2. Statement of the problem

Let us consider a uniform circular arch, as shown in Fig. 1, with different boundary conditions.
Let us suppose that the system vibrates freely in the vertical plane, with small oscillations around
a circular and unstressed configuration of equilibrium. The kinematics of the arch is thoroughly
defined by assigning the tangential displacement uðy; tÞ; the normal displacement vðy; tÞ and the
rotation angle about the binormal axis jðy; tÞ of the y angular coordinate cross section at a
moment of time t.
Taking into account the effect of shear and axial deformations and rotary inertia, the equations

of motion can be written as follows (see Refs. [8,30])

1

R

qNðy; tÞ
qy

�
V ðy; tÞ

R
¼ rA

q2uðy; tÞ
qt2

,

1

R

qV ðy; tÞ
qy

þ
Nðy; tÞ

R
¼ rA

q2vðy; tÞ
qt2

,

1

R

qMðy; tÞ
qy

� V ðy; tÞ ¼ rI
q2jðy; tÞ

qt2
, (1)

for y 2 ð�Y;YÞ; and t40: In the previous equations, Nðy; tÞ; V ðy; tÞ and Mðy; tÞ; denote the axial
force, the shearing force and the bending moment, respectively. Moreover, R is the radius of the
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Fig. 1. Clamped–clamped circular arch with indication of damage position.
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arch, r is the mass density for unit volume, A and I are the area and the moment of inertia of the
transversal section. The internal forces can be expressed by the constitutive relations

Nðy; tÞ ¼
EA

R

quðy; tÞ
qy

� vðy; tÞ
� �

,

V ðy; tÞ ¼
GA

Rw
uðy; tÞ þ

qvðy; tÞ
qy

þ Rjðy; tÞ
� �

,

Mðy; tÞ ¼
EI

R

qjðy; tÞ
qy

, (2)

where E, G are Young’s and shear moduli, w is the shear factor.
We suppose now that a crack appears at the cross section of angular coordinate y� 2 ð�Y;YÞ; if

the crack remains always open during the vibration of the arch, it can be modeled as a massless
rotational elastic spring at the damaged cross section, see Refs. [19–21]. The stiffness K of the
spring can be related in a precise way to the geometry of damage, as suggested, for example, by
Dimarogonas and Paipetis [31].
Substituting relations (2) in Eq. (1), the equations of motion can be written separately in the

two intervals ð�Y; y�Þ and ðy�;YÞ; in terms of displacements components only

EA

R2
q
qy

quðaÞðy; tÞ
qy

� vðaÞðy; tÞ
� �

�
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R2w
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qvðaÞðy; tÞ
qy

þ RjðaÞðy; tÞ
� �
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q2uðaÞðy; tÞ

qt2
,

GA

R2w
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qvðaÞðy; tÞ

qy
þ RjðaÞðy; tÞ

� �
þ
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qy
� vðaÞðy; tÞ

� �
¼ rA

q2vðaÞðy; tÞ
qt2

,

EI

R2
q2jðaÞðy; tÞ

qy2
�

GA

Rw
uðaÞðy; tÞ þ

qvðaÞðy; tÞ
qy

þ RjðaÞðy; tÞ
� �

¼ rI
q2jðaÞðy; tÞ

qt2
, (3)

for a ¼ 1; 2: In the previous equations the indices a ¼ 1; 2 denote the left and right segment of the
arch, respectively ð�Y; y�Þ and ðy�;YÞ: Eqs. (3) show that the small vibrations of the circular
cracked arch are regulated by a system of six differential equations, three per each segment
individuated by the crack, where a coupling takes place between tangential displacement
ðuðaÞðy; tÞÞ; normal displacement ðvðaÞðy; tÞÞ and rotation ðjðaÞðy; tÞÞ: A proper set of boundary
conditions must be adjoined, as follows
(i)
 Clamped–clamped:

uð1Þð�Y; tÞ ¼ uð2ÞðY; tÞ ¼ 0,

vð1Þð�Y; tÞ ¼ vð2ÞðY; tÞ ¼ 0; t40,

jð1Þð�Y; tÞ ¼ jð2ÞðY; tÞ ¼ 0. (4)
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Hinged–hinged:
(ii)
uð1Þð�Y; tÞ ¼ uð2ÞðY; tÞ ¼ 0,

vð1Þð�Y; tÞ ¼ vð2ÞðY; tÞ ¼ 0; t40,

M ð1Þð�Y; tÞ ¼ M ð2ÞðY; tÞ ¼ 0. (5)
(iii)
 Free–free:

N ð1Þð�Y; tÞ ¼ N ð2ÞðY; tÞ ¼ 0,

V ð1Þð�Y; tÞ ¼ V ð2ÞðY; tÞ ¼ 0; t40,

M ð1Þð�Y; tÞ ¼ M ð2ÞðY; tÞ ¼ 0 (6)
just as the following jump conditions

uð2Þðy�; tÞ � uð1Þðy�; tÞ ¼ 0,

vð2Þðy�; tÞ � vð1Þðy�; tÞ ¼ 0,

Kðjð2Þðy�; tÞ � jð1Þðy�; tÞÞ ¼ M ð1Þðy�; tÞ,

N ð2Þðy�; tÞ � Nð1Þðy�; tÞ ¼ 0; t40,

V ð2Þðy�; tÞ � V ð1Þðy�; tÞ ¼ 0,

M ð2Þðy�; tÞ � M ð1Þðy�; tÞ ¼ 0 (7)

hold at the cross section where the crack occurs. The undamaged arch corresponds to K ! 1; or,
equivalently, to jð2Þðy�; tÞ � jð1Þðy�; tÞ ¼ 0:
In the following section the case of an arch in undamaged and damaged configuration, having

constant elastic and inertial properties, will be closely examined.
3. Analytical and numerical solutions

3.1. Exact solution

The free undamped vibrations of an uniform arch in damaged configuration are regulated by
the coupled system of partial differential equations (3), with the suitable boundary conditions
(4)–(6) in the case of clamped, hinged or free ends, respectively, and jump conditions (7). We seek
solutions that are harmonic in time and whose frequency is o; then, the displacements and the
rotation angle can be written as

uðaÞðy; tÞ ¼ uðaÞðyÞ cosot,
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vðaÞðy; tÞ ¼ vðaÞðyÞ cosot,

jðaÞðy; tÞ ¼ jðaÞðyÞ cosot, (8)

where the vibration spatial amplitude values (uðaÞðyÞ; vðaÞðyÞ; jðaÞðyÞ) fulfill the differential
system

EA
d

dy
duðaÞðyÞ
dy

� vðaÞðyÞ
� �

�
GA

w
uðaÞðyÞ þ

dvðaÞðyÞ
dy

þ RjðaÞðyÞ
� �

þ o2R2rAuðaÞðyÞ ¼ 0,

GA

w
d

dy
uðaÞðyÞ þ

dvðaÞðyÞ
dy

þ RjðaÞðyÞ
� �

þ EA
duðaÞðyÞ
dy

� vðaÞðyÞ
� �

þ o2R2rAvðaÞðyÞ ¼ 0,

EI
d2jðaÞðyÞ

dy2
�

GAR

w
uðaÞðyÞ þ

dvðaÞðyÞ
dy

þ RjðaÞðyÞ
� �

þ o2R2rIjðaÞðyÞ ¼ 0, (9)

for a ¼ 1; 2:
The six boundary conditions are expressed as
(i)
 Clamped–clamped:

uð1Þð�YÞ ¼ uð2ÞðYÞ ¼ 0,

vð1Þð�YÞ ¼ vð2ÞðYÞ ¼ 0,

jð1Þð�YÞ ¼ jð2ÞðYÞ ¼ 0. (10)
(ii)
 Hinged–hinged:

uð1Þð�YÞ ¼ uð2ÞðYÞ ¼ 0,

vð1Þð�YÞ ¼ vð2ÞðYÞ ¼ 0,

djð1Þð�YÞ

dy
¼
djð2ÞðYÞ

dy
¼ 0. (11)
(iii)
 Free–free:

duð1Þð�YÞ

dy
� vð1Þð�YÞ ¼

duð2ÞðYÞ

dy
� vð2ÞðYÞ ¼ 0,

uð1Þð�YÞ þ
dvð1Þð�YÞ

dy
þ Rjð1Þð�YÞ ¼ uð2ÞðYÞ þ

dvð2ÞðYÞ

dy
þ Rjð2ÞðYÞ ¼ 0,

djð1Þð�YÞ

dy
¼
djð2ÞðYÞ

dy
¼ 0, (12)
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the six jump conditions
and

uð2Þðy�Þ � uð1Þðy�Þ ¼ 0,

vð2Þðy�Þ � vð1Þðy�Þ ¼ 0,

Kðjð2Þðy�Þ � jð1Þðy�ÞÞ ¼
EI

R

djð1Þðy�Þ
dy

,

duð2Þðy�Þ
dy

� vð2Þðy�Þ �
duð1Þðy�Þ
dy

þ vð1Þðy�Þ ¼ 0,

uð2Þðy�Þ þ
dvð2Þðy�Þ
dy

þ Rjð2Þðy�Þ � uð1Þðy�Þ �
dvð1Þðy�Þ
dy

� Rjð1Þðy�Þ ¼ 0,

djð2Þðy�Þ
dy

�
djð1Þðy�Þ
dy

¼ 0, (13)

for t40: The complete primitive (uðaÞðyÞ; vðaÞðyÞ; jðaÞðyÞ) of system (9) takes the form of

ðuðaÞðyÞ; vðaÞðyÞ;jðaÞðyÞÞ ¼
X6
b¼1

c
ðaÞ
b ðw

ðaÞ
1 ;wðaÞ

2 ;wðaÞ
3 Þ

ðbÞ expðlðaÞb yÞ, (14)

for a ¼ 1; 2; where fcðaÞb g6b¼1 is a vector of unknowns constants which depend on the boundary
conditions. In Eq. (14), flðaÞb ;wða;bÞ � ðw

ðaÞ
1 ;wðaÞ

2 ;wðaÞ
3 Þ

ðbÞ
g is the bth eigenpair of the eigenvalue

problem in the y spatial variable for the ath interval of the arch. Applying the Euler characteristic
exponents method, we seek solutions for system (9) having the form of expðlðaÞb yÞwða;bÞ:
The 12 complex numbers flðaÞb g6b¼1 are the roots of the characteristic polynomials

pðaÞðlÞ ¼ d0 þ d1ðl
ðaÞ
Þ
2
þ d2ðl

ðaÞ
Þ
4
þ d3ðl

ðaÞ
Þ
6, (15)

where

d0 ¼ EA
GA

w
ðAR2 þ IÞO� EAI þ

GA

w
ðAR2 þ IÞ

� �
AO2 þ A2IO3,

d1 ¼ EA
GA

w
EI � EA

GA

w
ðAR2 � 2IÞ þ EIA EA þ

GA

w

� �� �
Oþ 2EA þ

GA

w

� �
AIO2,

d2 ¼ 2EA
GA

w
EI þ EA þ 2

GA

w

� �
EAIO,

d3 ¼ EA
GA

w
EI , (16)

and O � o2rR2: A parametric study of the roots of polynomials pðaÞðlðaÞÞ shows that the roots
ðlðaÞÞ2 can be real value (positive or negative) or complex value functions of frequency o: This fact
allows the representation of the exponential factors present in expressions (14) through harmonic
functions if ðlðaÞÞ2 root of pðaÞðlðaÞÞ is negative, through hyperbolic functions if ðlðaÞÞ2 is positive,
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and through a suitable combination of products of harmonic and hyperbolic functions if ðlðaÞÞ2

root of pðaÞðlðaÞÞ is complex.
Considering that the wða;bÞ eigenvector, with b ¼ 1; . . . ; 6; is proportional to the vector of

components

w1 ¼ 1,

w2ðl
ðaÞ
b Þ ¼ �

lðaÞb ½EAððlðaÞb Þ
2
þ 1Þ þ AO�

AO� EAððlðaÞb Þ
2
þ 1Þ

,

w3ðl
ðaÞ
b Þ ¼

w
GAR

EAðlðaÞb Þ
2
�

GA

w
þ AO

� �
� lðaÞb EA þ

GA

w

� �
w2ðl

ðaÞ
b Þ

� �
, (17)

the characteristic polynomial can be then formed for the eigenvalue problem (9), by imposing that
the general solution (14) must fulfill boundary conditions (10), (11) or (12) and the jump
conditions (13). In so doing, one obtains a homogeneous linear system in real constants c ¼
fc

ðaÞ
b g6b¼1; for example,MðoÞc ¼ 0; whereMðoÞ is a 12� 12 matrix depending on o: Natural cyclic
pulsations correspond to those special o values that cancel out the determinant ofMðoÞ: In order
to determine the natural pulsations of the arch as roots of the characteristic polynomial detMðoÞ;
a numeric procedure was adopted, whose essential steps can be summarized as follows. Once a
value for o was set, say o�; the sixth degree polynomial equations in lðaÞ; pðaÞðlðoÞÞ ¼ 0; were
solved, a ¼ 1; 2; where pðaÞðlðaÞÞ were assumed like in expression (15). Once the six lðaÞ roots of
pðaÞðlðaÞÞ were found, the expressions of the eigensolutions expðlðaÞyÞwða;bÞ were determined by
imposing the proper conditions at both ends of the arch and at the damaged cross section, as well
as the value of detMðo�Þ: By repeating this procedure for o� þ Do; where Do is a small
increment, the graph of detMðoÞ was reconstructed in a given frequency range. Eigenfrequency
values were calculated by a false position method applied between the two values of the o
variable, corresponding to a change of sign of detMðoÞ: For each eigenfrequency value, after
solving Mc ¼ 0; the vector c was calculated and therefore the corresponding mode of vibration
was determined.

3.2. D.Q. solution

A novel approach in numerically solving the governing equations (9) is represented by the D.Q.
method, coupled with a proper domain decomposition technique [24–26,32], necessary to enforce
the jump conditions across the cracked section. This method pertains to the class of collocation
methods and, for the problem studied herein, demonstrates its numerical accuracy and extreme
coding simplicity. The basic steps in the D.Q. solution of the free vibration problem of damaged
circular arches are as follows [29]:
�
 A discretization of independent (space) variable y 2 ½�Y;Y� into each subdomain a ¼ 1; 2 by a
suitable number of collocation points yð1Þi 2 fyð1Þ1 ; yð1Þ2 ; . . . ; yð1Þm g; yð2Þi 2 fyð2Þ1 ; yð2Þ2 ; . . . ; yð2Þn g; is made
by taking into account the domain decomposition due to the two arch segments.
�
 An interpolation of dependent variables (uðaÞðyðaÞÞ; vðaÞðyðaÞÞ; jðaÞðyðaÞÞ) through local values in the
collocation points of each subdomain is performed.
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�
 The spatial derivatives are approximated according to the previous interpolation rule.

�
 The differential governing systems (9) are transformed into linear eigenvalue problems for the
natural frequencies; the boundary and the jump conditions being imposed in the collocation
points corresponding to the boundary and the cracking nodes. All these relations are imposed
pointwise.
�
 The solution of the previously stated discrete system in terms of natural frequencies and mode
shapes components is worked out. For each mode, using the aforementioned interpolation,
local values of dependent variables are used to obtain the complete assessment of deformed
configuration. The approximated states of stress and deformation can be obtained by using the
corresponding relationships.
In what precedes there are two basic choices left arbitrary, i.e. the collocation points and the
interpolation scheme adopted. In the present study, Lagrange interpolating polynomials will be
used coupled with a rational sampling of grid points [33], along the two segments of the circular
arch.
In what follows a hint to the discretization of governing differential equation will be given; for

example, the tangential displacement uðaÞ is approximated as

uðaÞ ¼
Xm;n

i¼1

Liðy
ðaÞ
ÞuðaÞðyðaÞi Þ ¼

Xm;n

i¼1

L
ðaÞ
i u

ðaÞ
i ; i ¼ 1; . . . ;m=n; a ¼ 1; 2, (18)

where L
ðaÞ
i are common Lagrange polynomials, depending on each collocation grid. Accordingly,

the spatial derivative of this displacement, evaluated at a certain node yðaÞi ; takes the following
form:

druðaÞ

dyðaÞ
r

����
yðaÞ

i

¼
Xm;n

k¼1

a
ðaÞr
ik u

ðaÞ
k ; i ¼ 1; . . . ;m=n; a ¼ 1; 2 . . . . (19)

The preceding coefficients a
ðaÞr
ik are known as weighting coefficients and are dependent on the

derivative order r, on the collocation points yðaÞk and on the specific point yðaÞi ; where the derivative
is computed. A simple and recursive relationship for the kind of interpolation used has been
obtained [33]

a
ðaÞr
ik ¼

Q
ðyðaÞk Þ

ðyðaÞi � yðaÞk Þ
Q
ðyðaÞi Þ

; a
ðaÞr
ii ¼

X
kai

1

ðyðaÞi � yðaÞk Þ
; i ¼ 1; . . . ;m=n, (20)

where Y
ðyðaÞk Þ ¼

Y
pak

ðyðaÞk � yðaÞp Þ. (21)

Higher-order coefficients can be found using the following formula:

a
ðaÞrþ1
ik ¼ r a

ðaÞ1
ik a

ðaÞr
ik þ

a
ðaÞr�1
ik

ðyðaÞi � yðaÞk Þ

 !
; a

ðaÞrþ1
ii ¼ �

X
kai

a
ðaÞrþ1
ik ; i ¼ 1; . . . ;m=n, (22)
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Last, the choice of sampling points must be made. With Lagrange interpolating polynomials,
Chebyshev–Gauss–Lobatto sampling points rule proves efficient for numerical reasons [32] in a
way that for such a collocation the approximation error of dependent variable decreases as the
number of nodes increases. Moreover, when compared with different quadrature techniques, it
provides a less-expensive computation effort in calculating the weighting coefficients and a
sufficiently accurate representation of approximated displacements. Accordingly, each collocation
will be of the form

yð1Þi ¼ �Yþ ðy� þYÞ
1

2
1� cos

pði � 1Þ
m � 1

� �
; i ¼ 1; . . . ;m,

yð2Þi ¼ y� þ ðY� y�Þ
1

2
1� cos

pði � 1Þ
n � 1

� �
; i ¼ 1; . . . ; n. (23)

The simple numerical operations just illustrated, enable to write the equations of motion in
discrete form, transforming any space derivative in a weighted sum of node values of dependent
variables. Each triplet of approximated equations is valid in a single collocation point belonging
to one of the two arch segments. For the left segment, for example, one has

EA
Xm

k¼1

a
ð1Þ2
ik u

ð1Þ
k �

Xm

k¼1

a
ð1Þ1
ik v

ð1Þ
k

 !
�

GA

w
u
ð1Þ
i þ

Xm

k¼1

a
ð1Þ1
ik v

ð1Þ
k þ Rjð1Þ

i

 !
þ o2R2rAu

ð1Þ
i ¼ 0,

GA

w

Xm

k¼1

a
ð1Þ1
ik u

ð1Þ
k þ

Xm

k¼1

a
ð1Þ2
ik v

ð1Þ
k þ R

Xm

k¼1

a
ð1Þ1
ik jð1Þ

k

 !
þ EA

Xm

k¼1

a
ð1Þ1
ik u

ð1Þ
k � v

ð1Þ
i

 !
þ o2R2rAv

ð1Þ
i ¼ 0,

EI
Xm

k¼1

a
ð1Þ2
ik jð1Þ

k �
GAR

w
u
ð1Þ
i þ

Xm

k¼1

a
ð1Þ1
ik v

ð1Þ
k þ Rjð1Þ

i

 !
þ o2R2rIjð1Þ

i ¼ 0, (24)

i ¼ 2; . . . ;m � 1; and the sets of boundary conditions, that need to be imposed in the left extreme
point yð1Þ1 :
(i)
(25)
Clamped:

u
ð1Þ
1 ¼ 0,

v
ð1Þ
1 ¼ 0,

jð1Þ
1 ¼ 0.
(ii)
 Hinged:

u
ð1Þ
1 ¼ 0,

v
ð1Þ
1 ¼ 0,



(26)
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Xm

k¼1

a
ð1Þ1
1k jð1Þ

k ¼ 0.
(iii)
(27)
Free:

Xm

k¼1

a
ð1Þ1
1k u

ð1Þ
k � v

ð1Þ
1 ¼ 0,

u
ð1Þ
1 þ

Xm

k¼1

a
ð1Þ1
1k v

ð1Þ
k þ Rjð1Þ

1 ¼ 0,

Xm

k¼1

a
ð1Þ1
1k jð1Þ

k ¼ 0.
For the right segment similar approximated equations, by means of the above diffe-
rential quadrature rule, can be set. In correspondence of the crack (left segment last node/right
segment first node) the counterpart of the jump conditions (13) must be imposed by means of
the D.Q.:

uð1Þ
m ¼ u

ð2Þ
1 ,

vð1Þm ¼ v
ð2Þ
1 ,

Kðjð2Þ
1 � jð1Þ

m Þ ¼
EI

R

Xm

k¼1

a
ð1Þ1
mk jð1Þ

k or ¼
EI

R

Xn

k¼1

a
ð2Þ1
1k jð2Þ

k

 !
,

Xn

k¼1

a
ð2Þ1
1k u

ð2Þ
k � v

ð2Þ
1 ¼

Xm

k¼1

a
ð1Þ1
mk u

ð1Þ
k � vð1Þm ,

u
ð2Þ
1 þ

Xn

k¼1

a
ð2Þ2
1k v

ð2Þ
k þ Rjð2Þðy�Þ ¼ uð1Þm þ

Xm

k¼1

a
ð1Þ2
mk v

ð1Þ
k þ Rjð1Þ

m ,

Xn

k¼1

a
ð2Þ1
1k jð2Þ

k ¼
Xm

k¼1

a
ð1Þ1
mk jð1Þ

k . (28)

A similar triplet of (domain, boundary, jump) conditions can be easily written for the right
part of the arch delimited by the crack, the jump conditions remaining the same in both cases.
Now, applying the differential quadrature procedure, the whole system of differential equations
can be discretized and the global assembling leads to the following set of linear algebraic
equations:

Kd ¼ o2Md, (29)
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where, the global stiffness matrix has the following structure:

K ¼

K
ð1Þ
bb
3�3

K
ð1Þ
bc
3�3

0 0 K
ð1Þ
bd

3�ðm�2Þ

0

K
ð1Þ
cb
3�3

Kð1Þ
cc
3�3

0 0 K
ð1Þ
cd

3�ðn�2Þ

0

0 0 Kð2Þ
cc
3�3

K
ð2Þ
cb
3�3

0 K
ð2Þ
cd

3�ðm�2Þ

0 0 K
ð2Þ
bc
3�3

K
ð2Þ
bb
3�3

0 K
ð2Þ
bd

3�ðn�2Þ

K
ð1Þ
db

ðm�2Þ�3

K
ð1Þ
dc

ðn�2Þ�3

0 0 K
ð1Þ
dd

3ðm�2Þ�3ðm�2Þ

0

0 0 K
ð2Þ
dc

ðm�2Þ�3

K
ð2Þ
db

ðn�2Þ�3

0 K
ð2Þ
dd

3ðn�2Þ�3ðn�2Þ

2
666666666666666666666664

3
777777777777777777777775

¼

K
ð1&2Þ
bcb
12�12

K
ð1&2Þ
bcd

12�3ðmþn�4Þ

K
ð1&2Þ
dcb

3ðmþn�4Þ�12

K
ð1&2Þ
ddd

3ðmþn�4Þ�3ðmþn�4Þ

2
6664

3
7775, ð30Þ

while the mass matrix takes the form

M ¼

0
12�12

0
12�3ðm�2Þ

0
12�3ðn�2Þ

0
3ðm�2Þ�12

M
ð1Þ
dd

3ðm�2Þ�3ðm�2Þ

0
3ðm�2Þ�3ðn�2Þ

0
3ðn�2Þ�12

0
3ðn�2Þ�3ðm�2Þ

M
ð2Þ
dd

3ðn�2Þ�3ðn�2Þ

2
6666664

3
7777775
¼

0
12�12

0
12�3ðmþn�4Þ

0
3ðmþn�4Þ�12

M
ð1&2Þ
ddd

3ðmþn�4Þ�3ðmþn�4Þ

2
664

3
775, (31)

and the nodal degrees of freedom are grouped in the algebraic vector:

dT ¼ d
ð1Þ
bb
1�3

dð1Þcc
1�3

dð2Þcc
1�3

d
ð2Þ
bb
1�3

d
ð1Þ
dd

1�3ðm�2Þ

d
ð2Þ
dd

1�3ðn�2Þ

" #
¼ d

ð1&2Þ
bcb
1�12

d
ð1&2Þ
ddd

1�3ðmþn�4Þ

" #T
. (32)

In the above matrices and vector, the partitioning due to domain decomposition is set forth by
subscripts b, c, d, referring to the system dof and standing for boundary, crack and domain,
respectively, while the apices ð1Þ and ð2Þ refer to the arch segments composing the damaged
structure. In order to make the computation more efficient, the kinematic condensation of non-

domain (boundary and crack) dof is performed

fK
ð1&2Þ
ddd � K

ð1&2Þ
dcb ½K

ð1&2Þ
bcb ��1K

ð1&2Þ
bcb gd

ð1&2Þ
ddd ¼ o2Mð1&2Þ

ddd d
ð1&2Þ
ddd . (33)
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Table 1

Physical parameters used in the analysis of free vibrations of the uniform arch

Parameter Value

Density of mass, r 7860 kg/m3

Young’s modulus, E 210,000MPa

Shear modulus, G 80,770MPa

Arch radius, R 1.0m

Opening angle, 2Y 100�

Cross section area, A 4.8� 10�3m2

Moment of inertia, I 2.56� 10�6m4

Shear factor, w 1.2
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The natural frequencies of the structure considered can be determined by vanishing the
determinant:

jfK
ð1&2Þ
ddd � K

ð1&2Þ
dcb ½K

ð1&2Þ
bcb ��1K

ð1&2Þ
bcd g � o2Mð1&2Þ

ddd j ¼ 0. (34)
4. Applications

In the present paragraph, some results and considerations about the free vibration problem of
both undamaged and damaged circular arches, with different boundary conditions are presented.
The analysis has been carried out by means of the analytical and numerical procedures
enlightened before.
The aims of this study are to emphasize how the modal parameters vary with the damage level

and cracking location and also to validate the reliability of the numerical approach, when a large
number of natural frequencies need to be evaluated.
In the following, numerical results related to two different circular arches, whose geometrical

and mechanical characteristics are listed in Table 1, are presented; the first one showing
clamped–clamped end conditions [34], the second one hinged–hinged. In particular, three damage
locations, y�1 ¼ �10�; y�2 ¼ �30�; y�3 ¼ �40�; for two damage levels D1 and D2 (corresponding to
K1 ¼ 10EI=R and K2 ¼ EI=R; respectively) have been considered in detail.
Tables 2 and 3 show the first ten eigenfrequencies, in Hz, corresponding to the two considered

arches, comparing the solutions of the two methods.
It is evident how the D.Q. technique produces practically coincident results, when compared

with analytical ones, using only a few sampling points along the two subdomains, for all the cases
examined. It is to be noted, however, that, when passing from undamaged configurations to
damaged ones, for the first four modes, only a few more grid points are needed, to compute the
correct eigenparameters (see Figs. 2 and 3); while almost a double number of grid nodes needs to
be used in order to obtain the same accuracy for higher modes. One remarkable feature,
comparing the two approaches, is that the computational cost decreases significantly using the
D.Q. procedure and this might be of interest when plotting frequency variations versus damage
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Table 2

Comparison between theoretical and numerical frequencies for a uniform clamped–clamped circular arch

Mode Undamaged (a) Damage D1 (b) Damage D2 (c)

Exact GDQ Error Exact GDQ Error Exact GDQ Error

(Hz) (Hz) (%) (Hz) (Hz) (%) (Hz) (Hz) (%)

(1)

1 328.2 328.2 0.0 321.4 321.3 0.0 295.1 295.0 0.0

2 546.6 546.6 0.0 540.6 540.3 0.0 520.9 520.7 0.0

3 854.1 854.1 0.0 852.0 852.4 0.1 838.8 838.9 0.0

4 1078.5 1078.5 0.0 1037.1 1041.1 0.4 939.8 944.3 0.5

5 1642.0 1642.0 0.0 1636.0 1641.7 0.3 1612.2 1619.3 0.4

6 1646.3 1646.3 0.0 1642.9 1643.9 0.1 1642.6 1643.8 0.1

7 2240.2 2240.3 0.0 2177.8 2207.9 1.4 2047.9 2069.8 1.1

8 2813.9 2814.0 0.0 2777.2 2874.7 3.5 2716.3 2816.9 3.7

(2)

1 328.2 328.2 0.0 323.3 323.3 0.0 302.7 302.7 0.0

2 546.6 546.6 0.0 533.7 533.7 0.0 493.3 493.3 0.0

3 854.1 854.1 0.0 842.3 842.3 0.0 806.9 806.9 0.0

4 1078.5 1078.5 0.0 1055.4 1055.4 0.0 1010.6 1010.6 0.0

5 1642.0 1642.0 0.0 1626.2 1626.3 0.0 1588.5 1588.6 0.0

6 1646.3 1646.3 0.0 1644.4 1644.5 0.0 1644.3 1644.3 0.0

7 2240.2 2240.3 0.0 2236.7 2236.8 0.0 2225.9 2225.9 0.0

8 2813.9 2814.0 0.0 2751.4 2752.9 0.1 2592.6 2592.6 0.1

(3)

1 328.2 328.2 0.0 326.6 326.6 0.0 322.0 321.9 0.0

2 546.6 546.6 0.0 544.6 544.4 0.0 539.2 539.2 0.0

3 854.1 854.1 0.0 853.4 853.4 0.0 850.8 850.8 0.0

4 1078.5 1078.5 0.0 1068.6 1068.6 0.0 1039.1 1039.1 0.0

5 1642.0 1642.0 0.0 1610.0 1610.3 0.0 1520.4 1520.8 0.0

6 1646.3 1646.3 0.0 1646.2 1646.2 0.0 1646.2 1646.2 0.0

7 2240.2 2240.3 0.0 2182.6 2184.4 0.1 2063.8 2064.9 0.1

8 2813.9 2814.0 0.0 2755.8 2754.4 �0.1 2664.9 2660.8 �0.2

Angular coordinate of the damage: (1) y�1 ¼ �10�; (2) y�2 ¼ �30�; (3) y�3 ¼ �40�: Stiffness of the spring: (a) K ! 1; (b)
K ¼ 10EI=R; (c) K ¼ EI=R: Collocations adopted: (1) m ¼ 11; n ¼ 11; (2) m ¼ 11; n ¼ 15; (3) m ¼ 9; n ¼ 17:
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locations and intensities. The D.Q. approximation proposed (Lagrange interpolation), using the
domain decomposition technique, is sufficiently accurate for the cases treated, since no steep
variation of dependent variables (displacements) is expected in the interior of the domain(s), but
only in the vicinity of boundaries, or cracked sections.
Figs. 4 and 5 represent the first six modal shapes, for both undamaged and damaged

configurations. For what concerns the undamaged reference configuration (dotted line), the even
and odd modes are, respectively, symmetric and skew-symmetric with respect to the middle
section of the arch. The sixth modal shape of the hinged arch shows a different behavior, when
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Table 3

Comparison between theoretical and numerical frequencies for a uniform hinged–hinged circular arch

Mode Undamaged (a) Damage D1 (b) Damage D2 (c)

Exact GDQ Error Exact GDQ Error Exact GDQ Error

(Hz) (Hz) (%) (Hz) (Hz) (%) (Hz) (Hz) (%)

(1)

1 201.5 201.4 0.0 198.1 198.1 0.0 184.0 184.0 0.0

2 460.7 460.7 0.0 452.7 452.7 0.0 422.9 422.9 0.0

3 801.2 801.2 0.0 800.1 800.1 0.0 757.2 757.2 0.0

4 886.5 886.5 0.0 852.9 852.9 0.0 805.9 805.9 0.0

5 1400.3 1400.3 0.0 1400.3 1400.3 0.0 1400.3 1400.3 0.0

6 1646.3 1646.3 0.0 1637.1 1637.1 0.0 1600.2 1600.2 0.0

7 1985.4 1985.4 0.0 1924.8 1924.8 0.0 1808.5 1808.5 0.0

8 2575.3 2575.3 0.0 2545.8 2545.8 0.0 2494.5 2494.4 0.0

(2)

1 201.5 201.4 0.0 192.1 192.1 0.0 150.9 150.9 0.0

2 460.7 460.7 0.0 445.4 445.4 0.0 402.6 402.6 0.0

3 801.2 801.2 0.0 795.4 795.4 0.0 775.8 775.8 0.0

4 886.5 886.5 0.0 876.3 876.3 0.0 857.7 857.7 0.0

5 1400.3 1400.3 0.0 1400.3 1400.3 0.0 1400.3 1400.3 0.0

6 1646.3 1646.3 0.0 1636.6 1636.6 0.0 1603.2 1603.2 0.0

7 1985.4 1985.4 0.0 1963.5 1963.5 0.0 1897.5 1897.5 0.0

8 2575.3 2575.3 0.0 2490.3 2490.2 0.0 2324.1 2323.9 0.0

(3)

1 201.5 201.4 0.0 197.4 197.4 0.0 168.5 168.5 0.0

2 460.7 460.7 0.0 445.7 445.7 0.0 374.9 374.9 0.0

3 801.2 801.2 0.0 800.4 800.4 0.0 733.0 733.0 0.0

4 886.5 886.5 0.0 850.2 850.2 0.0 803.5 803.5 0.0

5 1400.3 1400.3 0.0 1344.8 1344.8 0.0 1232.4 1232.4 0.0

6 1646.3 1646.3 0.0 1645.5 1645.5 0.0 1644.0 1644.0 0.0

7 1985.4 1985.4 0.0 1925.1 1925.0 0.0 1834.0 1833.9 0.0

8 2575.3 2575.3 0.0 2528.3 2529.2 0.0 2467.5 2468.4 0.0

Angular coordinate of the damage: (1) y�1 ¼ �10�; (2) y�2 ¼ �30�; (3) y�3 ¼ �40�: Stiffness of the spring: (a) K ! 1; (b)
K ¼ 10EI=R; (c) K ¼ EI=R: Collocations adopted: (1) m ¼ 11; n ¼ 11; (2) m ¼ 11; n ¼ 15; (3) m ¼ 9; n ¼ 17:

E. Viola et al. / Journal of Sound and Vibration 288 (2005) 887–906 901
compared to the others; in fact, the principal displacement component is the radial one, while
practically null tangential translation occurs (prevalent axial mode).
In the damaged cases (dashed and solid lines), mode shapes show no symmetry/skew-symmetry

anymore and generally differ from the undamaged ones. It is to be noted, however, that, for the
lightest damage level configuration (D1), no major differences are encountered when a
comparison is made with the corresponding undamaged case.
With regard of the frequencies variations, as expected, they show to be dependent on both crack

position and damage severity, as one can infer from Tables 2 and 3. A parametric study has been
conducted, to investigate the behavior of the damaged arch, when the crack location varies along
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Fig. 2. Convergence characteristics of clamped–clamped undamaged arch for the first four frequencies, by comparison

with analytical results.
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Fig. 3. Convergence characteristics of clamped–clamped damaged arch for the first four frequencies, by comparison

with analytical results. Angular coordinate of the cracked cross section: y�1 ¼ �30�; damage configuration D2.
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mode number = 1 mode number = 2

mode number = 3 mode number = 4

mode number = 5 mode number = 6

Fig. 4. Modal shapes relative to the free vibrations of the clamped–clamped circular arch in undamaged and damage

configuration D2. Angular coordinate of the cracked cross section: y
�
1 ¼ �30�:

mode number = 1 mode number = 2

mode number = 3 mode number = 4

mode number = 5 mode number = 6

Fig. 5. Modal shapes relative to the free vibrations of the hinged–hinged circular arch in undamaged and damage

configuration D2. Angular coordinate of the cracked cross section: y
�
1 ¼ �30�:
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Fig. 6. Frequency relative variations of the clamped–clamped circular arch versus damage location y; for different
levels of damage severity. Solid thick line: K ¼ 10EI=R; dashed thick line: K ¼ 5EI=R; solid thin line: K ¼ EI=R:
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Fig. 7. Frequency relative variations of the hinged–hinged circular arch versus damage location y; for different levels of
damage severity. Solid thick line: K ¼ 10EI=R; dashed thick line: K ¼ 5EI=R; solid thin line: K ¼ EI=R:
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the axis and for different levels of damage. Figs. 6 and 7 show the frequency relative variations
curves, for the first six modes of both clamped and hinged arches. As expected, the frequency
variations increase with the damage severity, i.e. as the elastic stiffness K decreases. On the other
hand, for a fixed value of K, the frequency variations depend on the crack position along the arch.
It is worth noting that frequency variations are symmetric with respect to the middle section and
that different damage locations can give rise to the same variations. This fact must be taken into
account, when a cracking position estimate by modal parameters measures is performed, in a way
that different crack locations, for a given damage severity, can correspond to the same measured
frequency.
5. Conclusions

In this paper, two different approaches to the study of free harmonic in-plane vibration of
circular arches have been presented. Both undamaged and damaged configurations have been
explored, modeling the cracked section as an elastic rotational spring. Both methods show
accurate in predicting natural frequencies and useful in plotting mode shapes and can be
conveniently adopted in localizing a cracked section by modal parameters measures. As a future
address, it could be interesting to compare the analytical frequencies and modal shapes estimates
with experimentally measured ones. A possible further extension, in the numerical range, could be
the taking into account of structural nonlinearity and a more refined theoretical modeling of the
crack.
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